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A theoretical method for the passive Hydrogen MASER optimization of the operating conditions: interrogation signal level 
and atomic beam intensity, and of the designing parameters is introduced. The method does not depend on the modulation 
or the locking technique. The results calculated numerically are plotted, and the relations required determining other 
quantities of practical interest are provided. A normal full-size MASER and a reduced size one are calculated as example. 
Theoretical limits of the Hydrogen frequency primary standard stability are deduced (derived). It is demonstrated that the 
stability limits in passive and active operation coincide and that they ultimately depend by temperature and confinement 
volume, other influences being possible to be made negligible through electronic enhancement of the quality factor of the 
reduced size MASER. 
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1. Introduction 

 
The Hydrogen MASER (Microwave Amplification by 

Stimulated Emission of Radiation), also known as 
hydrogen frequency standard, is a specific type of 
MASER that uses the intrinsic properties of the H atom to 
serve as a precision frequency reference. Both the proton 
and electron of a hydrogen atom have spins. The atom has 
a higher energy if both are spinning in the same direction 
and a lower energy if they spin in opposite directions. The 
amount of energy needed to reverse the spin of the 
electron is equivalent to a photon at the frequency of about 
1420 405 752 Hz. 
 

1.1 Electronic model of the MASER cavity 
 
The Hydrogen MASER is a time-frequency standard 

with an outstanding frequency stability. As physical 
principle, this MASER uses the atomic Hydrogen 
resonance at the hyperfine splitting frequency of the 
Hydrogen atom fundamental level. This transition is used 
due to the high quality factor of this atomic line (109).  

The atomic resonance is detected by stimulated 
emission of radiation in a microwave resonant cavity (of 
Q0 quality factor and Vc volume). Within the cavity, the H 
atoms are confined in a constant phase region (of Vb 
volume, η’ filling factor and Tb storage time) [2].  

A magnetically selected atomic beam is collimated in 
the storage region (of total intensity It, having an r 
proportion of atoms in the useful level |F=1, mF=0>, 
representing a net intensity I = rIt, the rest being in the 
level |F=1, mF=1>).  

The stored atoms relax through non-radiant processes 
with the T1 longitudinal and T2 transverse relaxation 
times. 

In the passively operated MASER, the resonant cavity 
is coupled with an input circuit with a coupling factor β1, 
and an output circuit with a coupling factor β2. The input 

circuit contains a V1 interrogation voltage generator with a 
Z0 matched internal resistance. The output circuit has as 
load resistance the matched Z0 input resistance of the 
amplifier, on which is collected the V2 voltage. The total 
coupling factor becomes β=β1+β2, that reduces the 
resonant cavity quality factor to Qc=Q0/(1+β) [2]. 

 

 
 

Fig. 1. Equivalent RLC-series electric circuit diagram. 
 
As a matter of principle, the atomic resonance is 

measured indirectly, through the output microwave 
voltage of the resonant cavity. The passive mode operation 
is the general case where there is a interrogation resonant 
signal injected in the cavity and the perturbation of the 
output voltage signal is measured through various 
modulation-demodulation techniques, using the MASER 
as a very selective microwave quantum amplifier to the 
purpose of transferring the stability of the atomic 
resonance to the controlled local oscillator. When this 
amplifier gets in self-oscillation we have the active mode 
of operation. The latter mode can occur when the power 
losses of the cavity and receptor load can be sustained by 
the power of the coherent stimulated emission of radiation. 
In such operation, the frequency stability of the atomic 
resonance line is transferred to a voltage controlled quartz 
oscillator by phase-locking loop.  

Considering that the interrogation voltage has the 
pulsation ω=2��, with a δω=ω0-ω mistuning correction 
and that the cavity resonance pulsation is ωc, with a 
δωc=ω0-ωc cavity mistuning correction, than the relation 
between the generator V1 and the output V2 voltages is: 
 



432                                                                                    C. Mirică, L. Giurgiu 
 

c
2 1 2 m 0 1 2 1

c

V 1 j Q V
⎛ ⎞⎛ ⎞ωω

⋅ + β + β + β + ⋅ − ⋅ = β ⋅β ⋅⎜ ⎟⎜ ⎟⎜ ⎟ω ω⎝ ⎠⎝ ⎠
     (1) 

 
In a RLC-series model, V1 the interrogation voltage 

applies to R1 internal resistance, R cavity resistance, Zm 
active atomic medium impedance, L cavity inductance, C 
cavity capacity and R2 load resistance of the detector, on 
which is collected the output voltage V2. All the 
impedances have the transformed values as measured in 
the output circuit by the coupling and quality factors. 
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Using the electronic circuit equivalent (2) the output-

input voltages relations (1) can be written as: 
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The above relation (3) is equivalent to: 
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This expression shows the equivalence with an RLC-

series circuit, supplied through a transformer by the 
interrogation signal voltage. 

The impedance Zm expresses the coupling with the 
active atomic amplifier, and it has negative values at 
resonance and becomes null out of resonance, thus the 
frequency dependency of the output voltage is 
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where βm is the coupling factor with the atomic medium, 
and it is a negative quantity due to the signal amplification 
by stimulated emission. 
 

1.2 Electronic model of the atomic amplifier 
 
For the quantitative description of βm one should 

define the quantities related to the effects of spin exchange 
relaxation and transition saturation. The spin exchange is a 
non-radiative relaxation that occurs when two atoms 
collide; hence the process is density and temperature 
dependent. 

Since the threshold intensity Ith that has been 
introduced for the active H MASER has no more physical 
meaning for the passive MASER [2], another reference 
and normalized atomic beam intensity are introduced to 
simplify the definitions: 
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It1 has the physical meaning of the total atomic beam 

intensity at which the spin exchange longitudinal 

relaxation time equals ( ) ( )t 1 20 0
T T T= ⋅  (the 

geometrical mean of the longitudinal and transverse 
relaxation times without spin exchange effect); exσ  is the 
spin exchange mean cross section; rv  is the mean relative 
velocity between H atoms at the cavity temperature 
Θc=313K,  (

20 2
ex r23.3 10 m  , v−σ ≅ ⋅ ⋅ = 3626 m/s). 

In respect to the above mentioned definition, the 
relaxation time with spin exchange effect can be described 
as [2]: 
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Another quantity that should be introduced is the 
specific quality factor of the Hydrogen MASER, 
introduced for the unloaded cavity, with a “0” subscript: 
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A further simplifying notation is: 
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The coupling factor with the atomic active medium 

becomes: 
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The unsaturated coupling factor at resonance is 

defined by 
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emphasizing the relation with the previously introduced 
oscillation parameter α [2] that describes the MASER’s 
capacity to enter in oscillation when α>1. 

The saturation factor at resonance is: 
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The power P1 has the physical and direct meaning of 
the potential power brought into the cavity by the 
magnetically selected atomic beam with the intensity It1, 
and it’s use simplifies all the relations. 

The voltage gain produced by the active medium is 
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G0 being the gain at resonance. 

 
 
2. Method. The optimization theory 
 
In any of the modulation and locking techniques that 

one might use, the physical quantity whose variation is 
detected in the passive Hydrogen MASER is the output 
voltage Vout. Considering this reason, the meaningful 
quantity for the stability evaluation is the dispersion value 
at resonance: 
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Added to the real mistuning voltage, the coupled 

cavity produces also a noise voltage that has the following 
value at resonance: 
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where f is the Fourier frequency band of the filtered noise. 
It should be mentioned that this is only the thermal white 
frequency noise of the loaded cavity and it does not 
contain any other noise source (e.g. inter-modulation noise 
induced by the modulation technique [3], electronic 
components flicker noise etc.) that have to be evaluated 
separately. The white frequency noise approximation is 
valid for medium time intervals. As for the white 
frequency noise produced by the phase locking loop, it is 
to be considered through the amplifier’s noise figure that 
can be measured without any special problem. This 
approach will be used bellow. 

The stability of the VCXO locking, in the assumption 
that the control loop operates without error, is: 
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due to the presence of the noise voltage Vn that induces a 
false error signal equal to ω0

.d in the control loop, shifting 

the frequency by Δω. In the time domain, for white noise, 
the Fourier frequency f transforms to (2τ)-1, τ being the 
integration time in a stability measurement. 

The stability’s expression becomes:   
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where the quantity X(α,S0) is the dimensionless function: 
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This result is similar to the expression for the power 

spectral density of the fractional amplitude fluctuations 
[2], since it accounts for the envelope detection and 
amplitude integration of the mistuning voltage. 

This quantity is the stability indicator of the 
interrogation signal level, through the saturation effect, 
when all the other parameters are kept constant. The first 
level of optimization is to minimize the X value by finding 
the optimum saturation for a given oscillation parameter 
α. 
 

2.1 Saturation level optimization 
 

The study of X, as a function of S0 having  parameter 
α shows the minimum of this quantity. This minimum is 
given in two domains of α values, by two roots of the 
equation 0X S 0∂ ∂ = , providing the optimum relation 
between S0 and α: 
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By setting the saturation factor according to (20) the 

number of variables is reduced by one, as in: 
 

( ) ( )0X X ,S⎡ ⎤α = α α⎣ ⎦  (Fig. 2)                   (21) 
 
leaving the stability to depend on the atomic beam 
intensity and the MASER quality factor q. 

For an already existent MASER, with ionic pumps 
that do not support atomic beam intensity as high as the 
optimum level, and with fixed couplings, the optimization 
stops at this first level. 
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Fig. 2. Optimal saturation S0 and stability indicator X vs. α. 
 

The optimum saturation factor is to be determined 
through (20). The output resonance voltage results from 
(12), and the carrier voltage amplitude Vg of the 
interrogation signal generator is to be calculated by (5). 
 

2.2 Atomic beam intensity optimization 
 
Since the oscillation parameter α is a function of the 

beam intensity and of the quality factor: 
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and a parameter of the X stability indicator, the following 
stability indicator is defined: 
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to account for the atomic beam intensity influence on the 
MASER stability. 

The second level of optimization is realized by 
varying the beam intensity to obtain the minimum value of 
Y, keeping q and u as parameters independent on the 
operating conditions. This minimum is numerically 
calculated in the equation: 
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The calculated dependence of the normalized beam 

intensity I%  and the indicator Y, for c=3 (i.e. (T1)0=(T2)0), 
are plotted in Fig. 3 and, respectively, Fig. 4. For lower 
values of c, the calculated values of the normalized beam 
intensity and of the indicator Y are reduced by up to 15%. 

The optimum normalized intensity takes values 
nearby 0.5, with a threshold at q=3/16=0.188, when α=8/9, 
where the (15) solution has its first derivative 
discontinuity. As a comment, it is worth to mention that 
this result is smaller than [2] that predicts a optimum of 
0.845. 

The same threshold appears for the stability indicator 
Y, but, for q>0.188, the dependence becomes nearly 
linear, as predicted in [2]. 

With the second level of optimization one should 
determine the optimum normalized beam intensity from 
Fig. 3 and proceed with the first level of optimization, as 
described above. 
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Fig. 3. Optimum normalized intensity for q<0.8 and c=3. 
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Fig. 4. Optimum stability indicator Y for q<0.8 and c=3. 
 

For an already existing MASER whose coupling 
factors cannot be modified, the optimization stops at this 
level, restricted to the operation parameters: interrogation 
signal level and atomic beam intensity [5]. 

The intrinsic stability of the MASER can be 
determined at this optimization level because the external 
noise is not introduced yet. 
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2.3 Resonant cavity coupling factor optimization 
 
In order to determine the optimum coupling factors, 

the external noise should be considered. The MASER 
stability, including the external noise, is defined by the 
following relation: 

 

y y' Fσ = ⋅ σ                                 (25) 
 
using the total input and output noise figure F of the 
locking loop. 

Assuming that β1 is negligibly small compared to β2 
[2], and considering the equivalent noise temperature 
(reflected in the output circuit of the cavity) of the 
amplification chain Θa, the noise figure, at resonance, is: 
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It is easy to observe that low coupling factors increase 

the noise figure while high coupling factors increase q 
factor and the Y value. Also, the variation of q implies 
changes of the optimum value of the gain G0. There is an 
optimum coupling between these two extreme situations, 
where a third stability indicator named Z  
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takes the minimum value possible. This optimum total 
coupling factor is plotted in Fig. 5: 
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Fig. 5. Optimum coupling factor β for q0<0.5, c=3, and 
ratio Θa/Θc=0.1,0.2..0.5. 

 
For q0<0.15, the optimum β is: 
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β = −                                  (28) 

 
in order to obtain the threshold value q=0.188 mentioned 
in sect. 2.5, and this optimum value does not depend on 
Θa. 

For q0>0.15, the optimum β is numerically calculated 
from the equation: 
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Fig. 6. Calculated optimum stability indicator Z for 
MASER with quality factors q0<0.5, c=3, and ratio 

Θa/Θc=0.1,0.2..0.5. 
 
Despite that the optimum β has a first derivative 

discontinuity, the stability indicator Z does not present this 
discontinuity and tends to Y for Θa tending to zero.  

This third level of optimization is usable to MASER 
where the coupling factors can be modified to optimally 
match them with the control loop noise. 

With the coupling factor determined through this last 
optimization level of the designing parameter β, the 
previous levels are applicable. 

Also, the stability of the MASER can be predicted. 
An experimental iterative method to set the optimal 

values of the operating conditions involves stability 
measurements and is very difficult. 

The other values for resonance gain and for the 
normalized atomic beam intensity are plotted below, 
against the unloaded specific MASER quality factor q0. 
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Fig. 7. Calculated optimum resonance gain for MASER 
with    quality    factors     q0<0.5,     c=3,    and   ratio 

Θa/Θc=0.1,0.2..0.5. 



436                                                                                    C. Mirică, L. Giurgiu 
 

 

0.5

0.52

0.54

0.56

0.58

0.6

0 0.1 0.2 0.3 0.4 0.5
q0

I

> a/> c=0,
0,1

~

 
 

Fig. 8. Calculated optimum normalized intensity for 
MASER with quality factors q0<0.5, c=3, and ratio 

Θa/Θc=0.1,0.2...0.5. 
 
 
3. Results. Example calculations 

 
As an exemplification of the above optimization 

theory, the algorithm was applied to normal and reduced 
size types of MASER cavities, token from Tab. 1 of [4]. 

The first two examples are for a normal size cavity 
MASER. For all the examples (T1)0=(T2)0 and Θa= 75 K 
were supposed. 

In the first example, the atomic beam intensity was 
left unchanged and only the saturation factor was 
optimized.  

In the second example the atomic beam intensity was 
optimized, with a notable improvement of the predicted 
stability. 

In the third example, was considered a reduced size 
cavity MASER. A full optimization of the coupling factor, 
beam intensity and saturation was calculated. 

Table 1. Calculus examples. 
 

Parameter Full-Size 
MASER with 

Saturation 
Optimization 

Full-Size 
MASER 

Saturation and 
Intensity 

Optimization 

Reduced-Size 
MASER Fully 

Optimized 

Q0 60.000 60.000 6.000 
Vb [10-3m3] 2,35 2,35 1,15 

Tt [s] 0,4 0.4 0.2 
q0 0,0435 0,0435 0,5 
Q 0,087 0,087 0,72 

It1 [1013/s] 2,67 2,67 5,23 
I%  0,122 0,5 0,59 

P1 [10-11W] 1,26 1,26 2,46 
α 1,004 1,916 0,118 
S0 0,911 0,954 0,921 
Y 10,1 8,0 17,0 

σy [10-13 τ1/2] 0,74 0,59 1,8 
Θa/Θc 75/313 75/313 75/313 

β 1 1 0,44 
σ'y [10-13 τ1/2] 0,82 0,59 2,0 

 
Considering in (9) that u=1, c=3, for all the practical 

purposes of q0>0,15, the following parameters have the 
optimal values: 
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where P is the total power in the resonant cavity, including 
the dissipation losses and the output power. 

As a result of the above calculations, enhancing the 
quality factor through feed-back amplification to get 

q0<0,15 provides less penalty in the overall stability 
through the influence of the amplification noise. 

The optimal relative stability of the frequency is: 
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Ultimately, the stability limit of the hydrogen 
MASER is related to the temperature and the confining 
volume. All the other influences can be reduced to 
negligible in worsening the stability. 

As a particular case, when q0<0,15 the active 
operation mode is described by the 
relations 0S 1= α − when V1=0. From the same method 
results the same minimal values for the intrinsic stability 
indicator Y=8 as it has been obtained for an optimally 
operated passive mode. From this mere fact, we have 
proposed these results as theoretical stability limits. 

 
 
4. Conclusions 
 
The stability of the output error signal was used as 

performance criterion for the optimization problem. For 
the definition of the stability was used the power spectral 
density of the fractional thermal amplitude fluctuations, 
because it is the quantity that affects the envelope 
detection and amplitude integration of the mistuning 
voltage. 

A three level optimization algorithm was developed: 
1. the saturation factor optimization: for the 

MASER were the atomic beam intensity and the coupling 
factors are given; this level provides the optimum 
interrogation generator voltage and the corresponding 
output voltage; 

2. the atomic beam intensity optimization: for the 
MASER were the coupling factors are given; this level is 
to be followed by the first one; 

3. the total coupling factor optimization: for the 
MASER were the couplings are to be designed, or could 
be changed; this level takes account on the equivalent 
noise temperature of the noise of the entire amplification, 
detection and feed-back loop reflected in the output circuit 
of the cavity; this level is to be followed by the second 
one. 

The calculated optimal stability according to the 
above described method applied for comparison to 
MASER cavities parameters exemplified by [4]  have 
proved to be better than the results of the quoted reference. 

All the other practically interesting quantities, such as 
the voltages, could be easily calculated with the provided 
relations, in any particular case of specific proportion 
between β1 and β2. 

As a demonstrated conclusion, the only theoretical 
way to improve the stability is to increase the confinement 
volume and to decrease the cavity temperature. 

Both ways of improving the stability have been 
experimentally tested by others [1-4]. An increased 
confining volume reduces the uncertainty introduced by 
the wall-shift, while cryogenic temperatures increase the 
so called “wall-shift” due to the hydrogen atoms 
adsorption to the confinement surface. 

Basically with any q0<0,15 it can be achieved the 
operational and design physical limit of stability according 
to the above described method. 

 
 
 
 
 
 
 
Acknowledgments 
 
The authors would like to express their gratitude to 

late Prof. Octav C. Gheorghiu, a true mentor who patiently 
formed generations of specialists with the Atomic Clocks 
Team in INLPR. We would also like to thank Prof. Tiberiu 
Tudor for the supportive and fruitful discussions. 

 
 
References 
 

  [1] G. Busca, IEEE Proc. 33th Ann. Symp. on Freq. Contr.,  

         563, 1979. 
  [2] C. Audoin , J. Vanier, The Quantum Physics of Atomic  
        Frequency Standards Adam Hilger, Bristol, 1988. 
  [3] C. Audoin, V. Candelier, N. Dimarcq, Conf. on  
        Precision Electromagn. Measurements, 1990. 
  [4] C. Audoin, J. Viennet, P. J. Lesage, Physique 42(C8),  
        159 (1981). 
  [5] C. Mirică, L. C. Giurgiu, O. C. Gheorghiu, Proc.11-th  
        European Frequency Forum, NEUCHATEL, 4-6  
        March 1997,  610, 1997. 
_____________________ 
*Corresponding author: claudiu.mirica@incite.ro 


